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A curved inhomogeneous anisotropic layer of variable thickness is con- 
sidered that has wavy surfaces. It is assumed that the elastic, thermo- 
physical characteristics of the layer material and the shape of its upper 
and lower surfaces are periodic in structure with a single periodicity 
cell (PC). The period of the structure is here comparable in magnitude 
with the layer thickness, which is assumed to be much less than the other 
linear dimensions of the body and the radius of curvature of its middle 
surface. 

On the basis of a general scheme for taking the average of processes 
in periodic media /l, 2/, a method is developed which enables a 
transition to be made from a spatial quasistatic thermoelasticity problem 
to a system of thermoelasticity equations for an average shell whose 
effective and thermophysical coefficients are determined from the 
solution of local problems in a PC. Results obtained for the static 
theory of elasticity in /3/ are used. The heat conduction problem is 
averaged to determine the temperature components occurring in the 
equation of motion. 

The model constructed enables thermoelastic strains, stresses and 
the temperature distribution to be obtained in sfiells and plates of 
composite or porous materials with a different kind of reinforcement of 
the periodic structure (waffle , ribbed, corrugated) in reinforced and 
grid-like shells and plates. In the limiting case of "smooth" surfaces 
and a homogeneous material, the thermoelasticity equations are obtained 
for shallow anisotropic shells and the heat conduction equations of 
anisotropic shells assuming a linear temperature distribution law over 
the thickness. 

1. The body being investigated has a periodic structure with a pariodicity cell (PC) &Ze 
which is given in an orthogonal system of dimensionless coordinates a,,a,,y /3f by the in- 
equalities 

(0 <a,< ah, 0 < a2< Eh, y-< p< y'} 

The dimensionless small parameter s governs the layer thickness, h characterizes the 
ratio of the PC dimensions to the layer thickness and is assumed to be a constant of the order 
of one. The functions F* yield the shape of the upper and lower surfaces S*. 

The physical components of the strain tensor et, and the displacement vector mt are 
connected by the Cauchy relationships /3/. The equations of motion in the quasistatic 
formulation agree with the equilibrium equations /3/ in which the time occurs as a parameter. 
The stresses are connected with the strains and the temperature increment 9 by the Duhamel- 
Neumann relationships 14, 5/ 

Oij=Qfm&n, - Cijn&mn @El 
(1.1) 

where Cil7Wl are the coefficients of elasticity, and a f, are the temperature coefficients of 
linear expansion and shear. Here and henceforth, summation is over identical subscripts where 

i, i, m, n = 1, 2, 3; k,Y, p, 6 = 1.2. 
The heat flux vector components qt are related to the temperature by the Fourier law 

/4, 6/ 

(1.2) 

where Z&J are thermal conductivities, H&are Lame coefficients, A, are coefficients of the 
first quadratic form, kh are the principal middle surface curvature, and a = (a,,ap). 

*Prikl.&fatem.Mekhan.,51,6,1OOO-lOOR, 
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Without taking account of thermoelastic energy dissipation, the heat balance equation 
under deformation can be written in the form /4, 6/ 

d6 1 
-f+cq=-H,H1 

(f is the density of internal heat sources, and c, is the volume specific heat). 
The force and thermal conditions 

oi,H&z,+ + ofsn3* = _t Pi* (y = y*) 

q,H;in,* + q3n,* = t as*0 T gs* (Y = r*) 

( i a* .*=--& 
1 1 --gJ][l+ &(g)2+&(g)2]-“1) 

(1.4) 

(1.5) 

are satisfied on the surfaces s*(u= I,*) where Pl* are external load components, as* are 
heat transfer coefficients, gs* are external heat fluxes, and ni+ are components of the unit 
normals n*to the surfaces S*. 

In the case when convective heat transfer occurs on the surfaces S*, we set 

in (1.5) (Ba* is the temperature of the environment). 

2. We introduce new coordinates and write the PC Pin the form 

{O<Y,<l, O<Y,<1, z-<z<z+j, z*=iy/*i_hF*(y) 

(Yl=~7Y,=~>z=+>Y=(Yl,Y,)) 

Following the formulation of the problem, we consider the elastic and thermophysical 
characteristics of the material cllrn,, (y, z), %,a (y, z), A,,@, z), c, (5% z), as*(g) to be periodic 
functions of y,,y, with the PC Q. The functions f(c, t, Y, z), gs* (a, t, y), as well as the 
external volume P(a,t,y,z)and surface p$((a,t, y) forces, may depend on both a,, c2, t. and 
on y,, y, with the same PC. 

We seek the solution in the form of the asymptotic expansions /l, 2/ 

Uf = zLi(O) (a. t) + EU&l) + 0 (El) (2.1) 

(3 = 6r + ze,, 6, = ey(o) (a, t) + dw) + 0 (9) (2.2) 

Here Z# (a, t, y, z), e,(l) (a, t, Y, 2) (1 = 1, 2, . . .) are periodic functions of y,, y, with the 
PC 62. The principal term Of the expansion (2.2) corresponds to the linear temperature dis- 
tribution law over the thickness , which is taken in deriving the heat conduction equations 
for thin plates and shells /4, 7/. 

On the basis 
thermal component 
stresses: 

The averaged 

of expansion (2.1), the problem is averaged in /3j in the absence of the 
in (1.1) and it is shown that the following expansion in e holds for the 

ufj = auij!l) f 0 (es) (2.3) 
equations 

a%<&> +pv+e(PV>= 0 

&g (e*J&<zc8> + plr* + a<yP,)) -a%,<~$ - 

a% <& + pa + e<P,) =0 

(2.4) 

are obtained for the principal terms of the expansion (2.3). 
Here (V is the volume of 62) 

(2.5) 

(2.6) 
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(2.7) 

The averaged stresses and their moments in (2.4) are connected with the strains of the 
layer middle surface by the following elasticity relationships /3/ 

(Z'U~>- (2~~~~)~~~ + (2%~) TLav (Z=O, 1) (2.9) 

(2.10) 

The functions r+, w from (2.10) govern the principle terms in the expansion of the dis- 
placement vector (2.1): 

(2.11) 

The effective stiffness moduli in (2.9) as coefficients are determined by the relation- 
ships 

by = &,,U", + yj,,v, by = Lij,,$‘~ + zCija,z (2.12) 

where U,,,=v(&z), V#'(E, z) are periodic solutions in the variables %& = A,y, (5 = (El, &) ) 
with periodsA*, respectively, forlocalproblems in the PC /3/ 

Here 

(2.15) 

Tt can be proved that the addition of a thermal component to (1.1) will not result in a 
change in (2.4), but components associated with the thermal strains occur in the elasticity 
relationships (2.9). Relationships expressing these components in terms of the principal 
terms of the temperature expansion (2.2) are derived in Sect.3, while on averaged system of 
equations to determine these functions is obtained in Sect.4. 

3. Taking into account that the layer thickness is small compared with the radii of 
curvature of the middle surface, we use the notation 

We set 
& = ekv’ (a) (3.1) 

&?l= ea,,(& z), asf=ea*(fu), 

in relationships (1.1) and (1.5). 
We note that the asymptotic form (3.11, (3.2) is 

gs* = egf (a, t. Y) (3.2) 

equivalent to neglecting the terms kvy 
in deriving the thin-shell heat conduction equations /7/ and the determination of the thin 
pLate and shell thermophysical characteristics mentioned /4, 7/. 

From the Cauchy relationships /3/ and (1.11, (2.11, and (2.2) we obtain for the principal 
term of expansion (2.3) 

I$:' =Lij,u$ + c, z~mvWW + zcijpvruv - CijmnCZmn (Oy' f ZtP) (3.3) 
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We substitute (3.3) into the equilibrium equations /31, expanded in terms of F, and 
conditions (1.4)‘ and by equating the principal terms to zero we obtain 

The solutions (3.4) periodic in &, g, can be represented in the form 

Z$ = uE@, f VZT,,. + &#i”’ + &,“@’ (3.5) 

where U,nv(%,z), V#'(&z) are solutions ofthelocal problems (2.131, and S,(i, c). S,* (8, z) 
are solutions periodic in &, Ea for the problems 

/DimSm--Br 

~.V,*(L,,&, - &,f= 0 (2 = z*) 
(Xii) 

/D&j'm*~&g+ 213, 

\Nj*(Lij$,+ -z*pi,)=o (z-z*) 

We use the notation 

Sij-Pij - Lij&Sm, Sij*=Zfi<j-Ltj$m* 

Taking account of (3.51, (3.7) and (2.12), we obtain from (3.3) 

&’ = bl"& v *j w(Iy + b?jNVrav- s&P' - si,%Q' 

It is here taken into account that btjsv = 0 131. 
Taking the average of (3.8) according to the rule (2.71, we have 

(3.7) 

(3.8) 

The relationships (3.9) are a generalization of the elasticity relationships (2.9) taking 
thermal stresses into account. We note that (s,j) = (z.s~j> = (s8,*> = (zsSj*> = 0 follows from 
(3.61 and (3.71. Consequently, the relationships <a#)> = <za #)> = 0 obtained in /3/ and 
utilized in deriving (2.4) remain valid even when the thermal component in (1.1) is taken into 
account, 

Substituting (3.9) into f2.4), we obtain a system of three resolving equations in the 
functions rlr, w governing the principal terms of the displacement vector (2.11). The 
functions e,,@(U, tf that must be determined from the solution of the heat conduction equation, 
will also occur in these equations. 

4. Let us expand relationships (1.2) in terms of e. Taking account of (2.2) and (3.1) 
we obtain 

We introduce the differential operator notation 

Taking account of (2.2)~ {3-l), (4.1) and (4.21, we expand (1.3) in powers of a' (F< 0) 
as follows 

(4.3) 
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Taking account of (2.21, (3.11, (3.2) and 14-l), conditions (1.5) yield the following in 
expansions in powers Of 6' (I.<< 1) 

where w*,N$ are defined by (2.6) and (2.15). The terms containingj'lare related to the 
expansion of the normal components nf in '~1. We note that the presence of components with 
negative powers of E in (4.4) and (4.6) is associated with taking account of the asymptotic 
form of the thin layer thermal resistance in the direction of the axis y 14, 7/. 

We introduce the notation 

We substitute the expression for qi(O) from (4.1) into (4.3) and (4.5). We obtain 

We represent the solution (4.9) in the form 

where W,, f&z), Wp" (f,z) are solutions periodic in & with periods A, for the problems 

DW,=--A, 

IVi* (LiW& + &A) = o (z D z’) 

(4.8) 

(4.9) 

(4.11) 

We use the notation 

t 

DW,,* = - A,, - z:$ 

iv** &jw,* -f- Z%&&) - 0 (2 =t zq 

&(E,z)=L*WIL -I- hi,, EZ~(5,Z) =LWla,*-l- hi 

We obtain from (4-l), (4.10) and (4.12) 

(4.12) 

(4.13) 

We take the average of (4.4) by using relationships (4.6) and the periodicity in 9, 

--E(f)tE(Cv)~ 
a$@) 

+ e (zc,) 7 = (Ld qv - qi (8) - (4.14) 

JOf$“’ - IJx - (4 + kz) (hd + E&i et’ f GO 

(4.15) 
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To obtain the second equation we take the average of the relationship (4.4) that has 
first been multipliedbyzbyusing relationships (4.6) multiplied by zf and the periodicity 

in Y,. Confining ourselves to a linear temperature distribution law over the layer thickness 

/4# 7/, we obtain 

@O$@ 
--e<rf> + a(G) al $ E(z~c,,> $! '(z&)a,@) _ (4.N) 

Ecj,(z&')- J,@' - 

The terms <q$a0’>7 <z@:O’> occur in (4.14) and (4.16)‘ and for which 

(4.17) 

follows from (4.13). 
substituting (4.17) into (4.14) and (4.16), we obtain a system of two resolving equations 

in the functions @,(*)(a,t) that determine the principal terms in the expansion of the 
temperature, the heat flux vector and the stresses associated with the thermal strains by 
means of (2.2t, (4.11 I (4.13) and (3.81. If the thickness changes sufficiently smoothly, 
then the terms Z,,z, in the equations can be neglected. 

We note that as in /3/ all the effective coefficients in relationships (3.9) and (4.17) 
are expressed in terms of the functions A,(a) in & coordinates and therefore can depend on 

CL6 even in the case of an initially homogeneous material. 

5. Taking account of relationships (3.9) and (4.171, Eqs.(2.4), (4.14) and (4.16) are 
equations of the quasistatic non-stationary thermoelasticity problem for an averaged shell 
whose effective elastic and thermophysical characteristics (the coefficients in (3.9) and 
(4.17)) are determined from the solution of local problems in the PC (2.131, (3.6), (4.11). 
All these problems are of one type and have unique solutions apart from arbitrary components 
periodic in &/l, 5/. The constant components drop out upon differentiation in (2.12), (3.7), 
(4.12). 

To formulate the boundary value problem for the equations obtained, boundary conditions 
must be appended on the contour I' bounding the layer middle surface, as must an initial 
temperature distribution. Neglecting the boundary effect /l/, the boundary conditions on 
the mechanical variables can be given in the form taken in thin shell theory /7-9/ by using 
the principal terms of the displacement vector 12.11) and the averaged stresses (3.9). 

Let us obtain the boundary and initial conditions for the heat conduction problem. 
On the boundary surface of the layer 2 which is a ruled surface for which the contour 

I' is a directrix while the normals to the middle surface are generators, let the following 
conditions be satisfied: 

q$z,r = az8 - &?r (a, Y, G (a E r) (5.1) 

(ax is the heat transfer coefficient, gr is the external heat flux, and nsr are components 
of the external unit normal to the surface 2). In the case of a boundary condition of the 
third kind gs = 1~92. A boundary condition of the first kind 

0 = $2 (a, y, $1 (a ?G r) (5.2) 

can be given on the surface Z in place of condition (5.1). 
The initial temperature distribution is 

We take the average 
terms of the temperature 
conditions of the second 

@ I f=* = 0, (a, Y, 2) (5.3) 

of the relationships (5.1)-(5.3) by retaining just the principal 
and the heat flux vector expansions. In the case of boundary 
or third kind 

(5.4) 

In the case of a boundary condition of the first kind 

<zr> I+*, + <P')@)= <Or> (r= 0, l,aer) 

The initial conditions are 

(<z') el") +:+r+l) ep) ltcO = <z%,) (T= 0, 1) 

(5.5) 

V5.6) 
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Local problems in a PC are extended to the case of piecewise-smooth functions modelling 
a composite or porous material. In this case continuity conditions analogous to conditions 
(2.13) for the local problem presented in /3/ are added on the surfaces of discontinuity. we 
note that these conditions correspond to ideal contact and can be written differently /l, 5/ 
by taking accountofthe specific features of the problems being solved. 

6. We examine the limit case of a "smooth" (*=O) homogeneous shell for the problem 
formulation under consideration. As is shown in /3/, Eq.(2.4) and relationships (2.9) and 
(2.10) reduce in this case to the elasticity equations and relationships taken in thin shallow 
shell theory /7-g/. The forces and moments are here related to the averaged stresses in the 
following manner (not summed with respect to 8): 

Eqs.(4.14) and (4.16) take the form 

(as+ f as-1 el”’ - [+ (as+ - as-j - @I + h) hl] ep + gs+ -I- gs- 

aep 
- 123 <Zf) + ec, 7 = E ( ag,, - yqq (+,2e) _ 

6 (OS‘ - us-) q o-3 
( 
Bs++ns-+ -+$ eP)+T(gs+- ge-) 

! ' 

In the case of convective heat transfer onthe surface Sf,the quantities g$ are determined 
from (1.6). 

Relationships (6.2) are a system of heat conduction equations for an anisotropic shell 
under the assumption of a 

From (6.3) we obtain 

linear temperature distribution law over its thickness: 

e = BI"' (a, t) + e-l@") (a t) 1 ’ (6.3) 

expressions for the integral temperature characteristics /4, Y/ 

Taking account of (6.4) Eqs.f6.2) agree with analogous heat conduction equations known in 
two special cases: for a homogeneous isotropic shell /7/ and an anisotropic plate /4/. 

Taking account of (3.2) in the isotropic case we obtain from the solution of the local 
problems (3.6) for coefficients (3.7) different from zero 

where &is the temperature coefficient of linear expansion, E is Young's modulus, and v is 
Poisson'sratio. Relationships associating the thermal stresses with the integral temperature 
characteristics (6.4) result from (3.9), (6.1), (6.4) and (6.5) that are in agreement with 
those taken in thin plate and shell thermoelasticity theory /4, 7, 8/. 
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